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Abstract

A general exact analysis for three-dimensional scattering of a time-harmonic plane-progressive sound wave obliquely

incident upon an arbitrarily thick bilaminated circular hollow cylinder of infinite extent, which is composed of a

cylindrically orthotropic axially polarized piezoelectric inner layer perfectly bonded to an orthotropic outer layer, is

presented. An approximate laminate model in the context of the so-called state space formulation along with the classical

T-matrix solution technique involving a system global transfer matrix is employed to solve for the unknown modal

scattering and transmission coefficients. Numerical example is given for an air-filled and water-submerged two-layered

elasto-piezoelectric hybrid (steel/PZT4) hollow cylinder insonified by an obliquely incident unit-amplitude plane sound

wave. Following the acoustic resonance scattering theory (RST), the total form function amplitude together with the

associated global scattering, the far-field inherent background, and the resonance scattering coefficients of the nth normal

mode are computed as a function of dimensionless frequency for selected angles of incidence, piezoelectric layer thickness

parameters, and electrical boundary conditions (i.e., open/closed circuit or active). Also, the electrical voltage coefficients

required for partial or complete cancellation of the reflected sound field are calculated. Limiting cases are considered and

good agreements with the solutions available in the literature are obtained.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Among the many types of piezoelectric elements, the (solid or hollow) cylindrical elements of various
polarizations are widely used as the principal generators and detectors of acoustic power (i.e., resonators,
actuators, transducers, or sensors) in a broad range of practical applications in underwater acoustics,
industrial macrosonics, non-destructive testing (NDT), medical diagnostics, electro-optics, communications,
and geophysical investigations [1–3]. For example, axially polarized piezoelectric hollow cylinders, one of the
much popular form of these elements are generally used as a driver in underwater electroacoustic sonar
projectors, or as an aligner (a translator) in a scanning tunnelling microscope [4,5]. Here we shall primarily
survey the important research works on dynamics of fluid-loaded piezoelectric cylinders and cylindrical shells.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Howarth et al. [6] presented an active (non-reflective) acoustic coating, consisting of a pair of piezoelectric
polymer sensors and a thickness extensional mode piezocomposite transducer (actuator), to prevent an
incident sound wave from reflecting off the acoustic boundary of a submerged object. Shul’ga et al. [7]
and Rudnitskii and Shul’ga [8] investigated the sensitivity (directivity) of a cylindrical piezoceramic
shell as a sound pressure receiver to its orientation in the sound field. Babaev et al. [9] studied the interaction
of an obliquely incident weak external plane shock wave with an infinitely long piezoceramic cylindrical
shell, positioned near a plane boundary (a rigid wall or free surface), based on the Kirchhoff–Love thin shell
theory. Belova et al. [10] proposed to use a finite-difference scheme constructed by the integro-interpolation
method to solve the non-stationary wave problem for an infinitely long hollow piezoelectric ceramic
cylinder immersed in a liquid and excited by an electric signal. Vovk and Oliynik [11] used the partial
domains method to examin acoustic characteristics of (sound radiation from) a liquid-filled piezoceramic
cylindrical shell with an asymmetric internal insertion for different configurations. Glazanov and
Mikhailov [12] proposed an approximate method for calculating the acoustic field produced by a finite-
height cylindrical piezoceramic transducer with allowance for the radiation from the ends of its inner volume
that is filled with an elastic medium characterized by an arbitrary Poisson’s ratio. Babaev and Babaev [13] used
coupled electroelasticity theory, acoustic approximation, and two-wire transmission line theory to study the
generation of waves by a submerged cylindrical piezoelectric transducer connected by a cable to a
source of non-stationary electric signals. Zhang et al. [14] employed the theories of Midline plate,
piezoelectricity, viscoelastic materials and fluid dynamics to present the finite element modelling of a fluid-
filled cylindrical shell with active constrained layer damping. Liu and Lee [15] used the normal-mode
expansion method to develop a mathematical model to describe the scattering of a plane wave
obliquely incident on a piezoelectric hexagonal 6mm cylinder in a fluid. The sensitivities of Rayleigh,
Whispering Gallery, and guided wave resonances to perturbations in elastic and piezoelectric constants were
discussed.

The above review indicates that, while there exists a notable body of literature on dynamics of fluid-loaded
piezoelectric cylinders and cylindrical shells, there seems to be no rigorous investigations on acoustic
scattering and cancellation of an incident wave field from a cylindrical shell structure (hollow cylinder). The
primary purpose of the current work is to fill this gap. Consequently, we adopt the normal-mode expansion
method in combination with the classical T-matrix solution approach and novel features of resonance
scattering theory (RST) to investigate the scattering and active control of a plane harmonic progressive
sound wave obliquely incident upon a bilaminate orthotropic/piezoelectric hollow cylinder based on full
equations of piezoelectricity. The proposed model is of interest due to its inherent value as a canonical
problem in structural acoustics. It is of practical value for efficient utilization of piezoelectric materials as
sensors and actuators in the control of general fluid–structure coupling dynamic problems involving
cylindrical shells [16]. It can also be easily extended to a more general configuration with an arbitrarily
number of elastic or piezoelectric layers. The presented exact solution can be used as the benchmark for
comparison to other solutions obtained by strictly numerical or asymptotic approaches. It can particularly
serve as diagnostic or test cases for purely numerical techniques that attempt to combine elastic, piezoelectric,
and fluid-loading effects.

2. Formulation

2.1. Acoustic field equations

Consider a time harmonic infinite plane acoustic wave, with the circular frequency o, obliquely incident at
an angle a on a submerged and fluid-filled bilaminate hollow cylinder of infinite length which is composed of
an outer layer of orthotropic material and an inner layer of axially polarized piezoelectric material, with a0 and
aq being the inner and outer radius of the piezoelectric layer, and aq and aq+s being the inner and outer radius
of the orthotropic layer, respectively. The problem geometry is depicted in Fig. 1a, where (x,y,z) is the
Cartesian coordinate system with origin at O, the z direction is coincident with the axis of the hollow cylinder,
and (r,y,z) is the corresponding cylindrical polar coordinate system. Following the standard methods of
theoretical acoustics, the field equations for an inviscid and ideal compressible medium that cannot support
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Fig. 1. Problem geometry.
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shear stresses may conveniently be expressed in terms of a scalar velocity potential as [17]

v ¼ �rj; p ¼ �iorj; r2jþ k2j ¼ 0, (1)

where k ¼ o/c is the wavenumber for the dilatational wave, c is the speed of sound, r is the ambient density,
v is the fluid particle velocity vector, and p is the acoustic pressure.

The dynamics of the problem may be expressed in terms of appropriate scalar potentials that can be
represented in the form of an infinite generalized Fourier series whose unknown scattering coefficients are to
be determined by imposing the proper boundary conditions. The expansion of the incident plane wave,
propagating in the surrounding fluid medium, in cylindrical coordinate has the form [18]

jinc:ðr; y;oÞ ¼ j0

X1
n¼0

�ni
nJnðkrrÞ cosðnyÞ eiðkzz�otÞ, (2)

where kz ¼ k sin a, kr ¼ k cos a, k ¼ o/c1 is the wavenumber in the outer fluid medium 1 (see Fig. 1a), Jn is the
cylindrical Bessel function of the first kind of order n [19], symbol en is the Neumann factor (en ¼ 1 for n ¼ 0,
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and en ¼ 2 for n40), i ¼
ffiffiffiffiffiffiffi
�1
p

, and j0 is the amplitude of the incident wave. Likewise, keeping in mind the
radiation condition, the solutions of the Helmholtz equation for the scattered potential in the surrounding
fluid medium 1, and the transmitted potential in the inner fluid medium 2 can respectively, be expressed as a
linear combination of cylindrical waves as [18]

j1ðr; y;oÞ ¼
X1
n¼0

�ni
nAnðoÞH ð1Þn ðkrrÞ cosðnyÞ eiðkzz�otÞ,

j2ðr; y;oÞ ¼
X1
n¼0

�ni
nBnðoÞ JnðKrrÞ cosðnyÞ eiðkzz�otÞ, (3)

where Kr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � k2

z

q
, K ¼ o/c2 is the acoustic wavenumber in the inner medium 2, H ð1Þn ðxÞ ¼ JnðxÞ þ iY nðxÞ

is the cylindrical Hankel function of the first kind of order n, Yn(x) is the cylindrical Bessel function of the
second kind of order n [19], and An and Bn are unknown scattering/transmission coefficients. Furthermore,
using Eq. (1), the acoustic pressures and radial velocities in the fluid mediums 1 and 2 are, respectively,
written as

p1 ¼ � ior1ðjinc: þ j1Þ

¼ � or1
X1
n¼0

inþ1�n½j0JnðkrrÞ þH ð1Þn ðkrrÞAnðoÞ� cosðnyÞ eiðkzz�otÞ,

p2 ¼ � ior2j2 ¼ �or2
X1
n¼0

�ni
nþ1JnðKrrÞBnðoÞ cosðnyÞ eiðkzz�otÞ (4)

and

vð1Þr ¼ �
qðjinc: þ j1Þ

qr
¼ �kr

X1
n¼0

�ni
n j0J

0
nðkrrÞ þH ð1Þ

0

n ðkrrÞAnðoÞ
h i

cosðnyÞ eiðkzz�otÞ,

vð2Þr ¼ �
qj2

qr
¼ �Kr

X1
n¼0

�ni
nJ 0nðKrrÞBnðoÞ cosðnyÞ eiðkzz�otÞ, (5)

where prime denotes differentiation with respect to the argument.
2.2. Modal transfer matrix for the orthotropic layer

An orthotropic homogeneous material is characterized by nine independent elastic constants, for which the
generalized Hooke’s law in the cylindrical coordinate system is written as [20]

srr

syy
szz

szy

srz

sry

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

co
11 co

12 co
13 0 0 0

co
12 co

22 co
23 0 0 0

co
13 co

23 co
33 0 0 0

0 0 0 co
44 0 0

0 0 0 0 co
55 0

0 0 0 0 0 co
66

2
6666666664

3
7777777775

grr

gyy
gzz

2gyz

2grz

2gry

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
, (6)

where co
ij are the elastic constants, sij and gij are the stress and strain components in the orthotropic layer,

respectively, and

grr ¼
qur

qr
; gyy ¼

quy

r qy
þ

ur

r
; gzz ¼

quz

qz
,

gry ¼
1

2

qur

r qy
þ

quy

qr
�

uy

r

� �
; gyz ¼

1

2

quz

r qy
þ

quy

qz

� �
; grz ¼

1

2

quz

qr
þ

qur

qz

� �
, (7)
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where ur, uy and uz are the material displacements in the r, y and z directions, respectively. Also, the equations
of motion, in the absence of body forces, in terms of the stress components are written as [21]

qsrr

qr
þ

qsry

r qy
þ

qsrz

qz
þ

1

r
ðsrr � sryÞ ¼ ro

q2ur

qt2
;

qsry

qr
þ

qsyy
r qy
þ

2

r
sry þ

qszy

qz
¼ ro

q2uy

qt2
,

qsrz

qr
þ

qsyz

r qy
þ

srz

r
þ

qszz

qz
¼ ro

q2uz

qt2
, (8)

where ro is the material density of the orthotropic layer.
Now, following the state space approach [22], the state equation can be readily derived by direct

substitution of the constitutive relations (6) and (7) into the equations of motion (8), which after some tedious
manipulations, leads to:

qYo

qr
¼MoYo, (9)

where Yo ¼ ½ur; uy; uz; srr; sry; srz�
T, is the state vector, and Mo is a 6� 6 coefficient matrix whose

elements are provided in Appendix A. Next, by employing the appropriate normal mode expansions [22], the
state vector Yo is expanded in terms of unknown modal coefficients as

Yo ¼

ur

uy

uz

srr

sry

srz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼
X1
n¼0

aqþsu
n
r ðZÞ cosðnyÞ

aqþsu
n
yðZÞ sinðnyÞ

aqþsu
n
zðZÞ cosðnyÞ

co
44s

n
rrðZÞ cosðnyÞ

co
44s

n
ryðZÞ sinðnyÞ

co
44s

n
rzðZÞ cosðnyÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
eiðkzz�otÞ, (10)

where Z ¼ r/aq+s is the dimensionless radial coordinate. Subsequent substitution of Eq. (10) into Eq. (9), and
utilizing the orthogonality of trigonometric functions, we obtain

dVo
n

dZ
¼ Do

nV
o
n, (11)

where Vo
n ¼ ½u

n
r ; un

y; un
z ; sn

rr; sn
ry; sn

rz�
T, is the modal state vector, and Do

n is a 6� 6 modal coefficient
matrix whose elements are given in Appendix A. Direct solution of Eq. (11) is very difficult, as the elements of
Do

n are not constants (i.e., they are functions of the radial coordinate Z; see Appendix A). Hence, by adopting a
laminate model [22], the orthotropic cylindrical layer may be assumed to be composed of s sublayers of equal
thickness, hs ¼ (aq+s�aq)/s which are perfectly bonded at their interfaces and lined up such that their axes of
symmetry coincide with each other (see Fig. 1b). As the thickness of each sublayer is supposed to be very
small, the coefficient matrix Do

n can advantageously be assumed constant within each sublayer, where we shall
use its value at the inner radius of the jth sublayer (i.e., we take Do

nðZj�1Þ, in which Zj ¼ [aq+jhs]/aq+s;
j ¼ 1,2,y,s). Thus, within the jth sublayer, the solution to Eq. (11) can be written as

Vo
nðZÞ ¼ Vo

nðZj�1Þ exp ðZ� Zj�1ÞD
o
nðZj�1Þ

h i
, (12)

where Zj�1 ¼ ½aq þ ðj � 1Þhs�=aqþs

� �
pZp Zj ¼ ½aq þ jhs�=aqþs

� �
. Subsequent evaluation of Eq. (12) at the

outer surface of the jth sublayer, leads to the following useful recurrence relation:

Vo
nðZjÞ ¼ Vo

nðZj�1Þ exp hsD
o
nðZj�1Þ=aqþs

h i
, (13)

which relates the state variables at the outer surface of the jth sublayer to those at the inner surface. Finally, by
invoking the continuity conditions between all interface layers, the state variables at the outer radius of the
orthotropic layer (i.e., at r ¼ aq+s for which Zq+s ¼ aq+s/aq+s ¼ 1) are advantageously related to those at the
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inner radius (i.e., at r ¼ aq for which Zq ¼ aq/aq+s) via a 6� 6 local modal transfer matrix To
n, by

Vo
nðZqþsÞ ¼ To

nV
o
nðZqÞ, (14)

where To
n ¼

Qs
j¼1 exp hsD

o
nðZj�1Þ=aqþs

h i
.

2.3. Modal transfer matrix for the piezoelectric layer

A similar set of equations can be derived for the piezoelectric layer. Accordingly, the generalized
constitutive relations for an axially polarized homogeneous piezoelectric cylindrical layer may be written
as [23]

Srr

Syy

Szz

Syz

Srz

Sry

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

c
p
11 c

p
12 c

p
13 0 0 0

c
p
12 c

p
22 c

p
23 0 0 0

c
p
13 c

p
23 c

p
33 0 0 0

0 0 0 c
p
44 0 0

0 0 0 0 c
p
55 0

0 0 0 0 0 c
p
66

2
6666666664

3
7777777775

Grr

Gyy

Gzz

2Gyz

2Grz

2Gry

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
�

0 0 e31

0 0 e32

0 0 e33

0 e24 0

e15 0 0

0 0 0

2
666666664

3
777777775

Er

Ey

Ez

8><
>:

9>=
>;, (15)

where Sij and Gij are the stress and strain components, respectively, Er ¼ qf/qr, Ey ¼ qf/rqy, and Ez ¼ qf/qz,
are the electric intensity in the r, y and z directions, respectively, f is the electric potential, c

p
ij, eij are the elastic

and piezoelectric constants, respectively, and the strain components are related to the material displacement
components in the r, y and z directions by

Grr ¼
qUr

qr
; Gyy ¼

qUy

r qy
þ

Ur

r
; Gzz ¼

qUz

qz
; Gry ¼

1

2

qUr

r qy
þ

qUy

qr
�

Uy

r

� �
,

Gyz ¼
1

2

qUz

r qy
þ

qUy

qz

� �
; Grz ¼

1

2

qUz

qr
þ

qUr

qz

� �
, (16)

Furthermore, the equations of motion in the absence of body forces, are written as [23]

qSrr

qr
þ

qSry

r qy
þ

qSrz

qz
þ

1

r
ðSrr � SryÞ ¼ rp

q2Ur

qt2
;

qSry

qr
þ

qSyy

r qy
þ

2

r
Sry þ

qSzy

qz
¼ rp

q2Uy

qt2
,

qSrz

qr
þ

qSyz

r qy
þ

Srz

r
þ

qSzz

qz
¼ rp

q2Uz

qt2
;

qDr

qr
þ

qDy

r qy
þ

qDz

qz
þ

Dr

r
¼ Qf , (17)

where rp is the material density of piezoelectric material, Qf is the free charge density, and the electric
displacement vector components are written as

Dr ¼ �11Er þ 2e15Grz,

Dy ¼ �22Ey þ 2e24Gyz,

Dz ¼ �33Ez þ e31Grr þ e32Gyy þ e33Gzz, (18)

where eij is the dielectric constant.
Now, assuming a free charge condition (i.e., Qf ¼ 0) along with the quasistatic approximation [24], we

follow the state space procedure as performed for the outer orthotropic layer (see Eqs. (9)–(14)). Subsequently,
we divide the piezoelectric layer into q equal sublayers (hq ¼ (aq�a0)/q), and ultimately invoke the continuity
conditions between all interface layers. Consequently, the state variables at the outer radius of the piezoelectric
layer (i.e., at r ¼ aq for which Zq ¼ aq/aq+s) are advantageously related to those at the inner radius (i.e., at
r ¼ a0 for which Z0 ¼ a0/aq+s) via a 8� 8 local modal transfer matrix Tp

n, by

Vp
nðZqÞ ¼ Tp

nV
p
nðZ0Þ, (19)
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where Vp
n ¼ ½U

n
r ; Un

y; Un
z ; Sn

rr; Sn
ry; Sn

rz; Dn
r ; fn�

T is the modal state vector, Tp
n ¼Qq

j¼1 exp hqD
p
nðZj�1Þ=aqþs

h i
in which Dp

n is a 8� 8 modal coefficient matrix whose elements are given in

Appendix B, and state vector Yp may be expanded in terms of unknown modal coefficients as

Y p ¼

Ur

Uy

Uz

Srr

Sry

Srz

Dr

f

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼
X1
n¼0

aqþsU
n
r ðZÞ cosðnyÞ

aqþsU
n
yðZÞ sinðnyÞ

aqþsU
n
zðZÞ cosðnyÞ

co
44S

n
rrðZÞ cosðnyÞ

co
44S

n
ryðZÞ sinðnyÞ

co
44S

n
rzðZÞ cosðnyÞffiffiffiffiffiffiffiffiffiffiffiffi

co
44�33

p
Dn

r ðZÞ cosðnyÞ

aqþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
co
44=�33

p
fnðZÞ cosðnyÞ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

eiðkzz�otÞ. (20)
2.4. Boundary conditions and the global transfer matrix

The unknown coefficients An and Bn as well as the elements of the modal state variable vectors, Vp
n and Vo

n,
must be determined from the appropriate boundary conditions. Thus, assuming perfect bounding at the
interface between the orthotropic and piezoelectric layers, continuity of normal fluid and solid velocities,
continuity of the normal stress and fluid pressure, and vanishing of tangential stress at the inner/outer
interface of the piezoelectric (orthotropic) layer, the following mechanical boundary conditions must be
fulfilled at r ¼ a0, aq+s:

ð�ioÞUrðr; y;oÞ
��
r¼a0
¼ vrðr; y;oÞ

��
r¼a0

; ð�ioÞurðr; y;oÞ
��
r¼aqþs

¼ vrðr; y;oÞ
��
r¼aqþs

;

Srrðr; y;oÞ
��
r¼a0
¼ �pðr; y;oÞjr¼a0 ; srrðr; y;oÞ

��
r¼aqþs

¼ � pðr; y;oÞjr¼aqþs
;

Sryðr; y;oÞ
��
r¼a0
¼ Srzðr; y;oÞ

��
r¼a0
¼ 0; sryðr; y;oÞ

��
r¼aqþs

¼ srzðr; y;oÞ
��
r¼aqþs

¼ 0;

srrðr; y;oÞ
��
r¼aq
¼ Srrðr; y;oÞ

��
r¼aq

; sryðr; y;oÞ
��
r¼aq
¼ Sryðr; y;oÞ

��
r¼aq

;

srzðr; y;oÞ
��
r¼aq
¼ Srzðr; y;oÞ

��
r¼aq

; Urðr; y;oÞ
��
r¼aq
¼ urðr; y;oÞ

��
r¼aq

;

Uyðr; y;oÞ
��
r¼aq
¼ uyðr; y;oÞ

��
r¼aq

; Uzðr; y;oÞ
��
r¼aq
¼ uzðr; y;oÞ

��
r¼aq

:

(21)

The direction of electric polarization is along the longitudinal z-axis of the hollow cylinder. Assuming that the
electrodes are deposited on the inner and outer cylindrical surfaces of the piezoelectric layer (e.g., please see
Fig. 1 in Ref. [25]), the corresponding open- or short-circuited electrical boundary conditions are written as [26]

fðr; y; z;oÞ
��
r¼a0;aq

¼ 0 ðshort circuitÞ,

Drðr; y; z;oÞ
��
r¼a0;aq

¼ 0 ðopen circuitÞ. (22)

For active control problems, it is necessary to use another electrical boundary condition in which the electric
voltage can be used as a new input in addition to incident pressure. Accordingly, we assume a general (spatially
dependent) electrical boundary condition applied across the electroded cylindrical surfaces, which may
advantageously be expanded in form of a Fourier series as [27]

fðr; y; z;oÞ
��
r¼a0
¼ 0,

fðr; y; z;oÞ
��
r¼aq
¼
X1
n¼0

aqþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
co
44=�33

q
fn cosðnyÞ e

iðkzz�otÞ, (23)

where fn(r ¼ aq), the modal coefficient of electrical voltage (see Eq. (20)), may be prescribed.
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Next, the linear (16� 16) system of equations resulting from the boundary conditions (21) and
(22) may considerably be reduced in size by incorporating the perfect bonding condition at the
interface between orthotropic and piezoelectric layers (i.e., at r ¼ aq) in our state space formulation.
Accordingly, the modal state variable vector at the inner radius of the piezoelectric layer (r ¼ a0) may
advantageously be related to those at the outer radius of the orthotropic layer (r ¼ aq+s), via a 6� 8 global
transfer matrix, Sn, as

Vo
nðZqþsÞ ¼ SnV

p
nðZ0Þ, (24)

where Sn ¼ To
nð:; :ÞT

p
nð1 : 6; :Þ. Subsequently, combining the expanded form of the above matrix relation with

Eqs. (21) and (22), and making use of Eqs. (4), (5) and (23), after some manipulations, the following 7� 7
coupled linear system of equations is obtained

Cn
1;1 Cn

1;2 0 0 �Sn
1;2 �Sn

1;3 �Sn
1;7

0 Cn
2;2 1 0 �Sn

2;2 �Sn
2;3 �Sn

2;7

0 Cn
3;2 0 1 �Sn

3;2 �Sn
3;3 �Sn

3;7

Cn
4;1 Cn

4;2 0 0 �Sn
4;2 �Sn

4;3 �Sn
4;7

0 Cn
5;2 0 0 �Sn

5;2 �Sn
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where

Cn
l;2 ¼ � ðS

n
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44ÞJnðKra0Þ. (26)

where l ¼ 1,y,6, and we note that for open circuit condition, the last row and the last column in
the left-hand side matrix should be modified as ½0; Cn

8;2; 0; 0; T
p
nð7;2Þ; T

p
nð7;3Þ; T

p
nð7;8Þ� and ½�Sn

1;8;
�Sn

2;8; �Sn
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6;8; T
p
nð7;8Þ�

T, respectively.
A simple look at the above linear system of Eq. (25), clearly indicates that proper selection of the modal

voltage coefficient fn can cause a complete cancellation of the reflected or transmitted sound field
(i.e., annihilation of the modal coefficients for the scattered or transmitted pressure: An or Bn ¼ 0).
Consequently, for complete cancellation or control of the scattered sound field, the linear system (25) may
advantageously be rearranged in the form:
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(27)

where fn is the modal electrical voltage coefficient required for prescription or complete annihilation of An.
Similarly, for complete cancellation or control of the transmitted sound field, the linear system (25) may
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advantageously be written in the form:
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where fn is the modal electrical voltage coefficient required for prescription or complete annihilation of Bn

Lastly, it is noted that an optimal control strategy should be adopted for simultaneous control of both
scattered and transmitted sound fields.
2.5. The global and resonance scattering coefficients

The most relevant field quantities associated with acoustic resonance scattering are the global and resonance
scattering coefficients. The global scattering coefficient may be obtained from the standard definition of the
backscattering form-function amplitude, which is written as [18]

jf1ðy ¼ p;oÞj � lim
r!1

ffiffiffiffiffiffiffiffiffi
2r

aqþs

s
j1ðr; y ¼ p;oÞ

jinc

����
���� ¼ X1

n¼0

f nðy ¼ p; kaqþsÞ

�����
�����, (29)

where the global scattering coefficient for the nth mode is given as

f nðy; kaqþsÞ ¼
2�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pikaqþs

p An cosðnyÞ. (30)

To extract resonance scattering coefficients from the global scattering coefficients, the non-resonance
contribution which is called the background of the scatterer, has to be known. The non-resonance
contributions can be in general approximated with a relevant impenetrable scatterer (e.g., hard and soft
scatterers for thick and very thin shells). The rigid background is suitable for isolating the resonances of a very
dense (heavy) cylinder, while the soft background has proved useful in extracting the resonances of a low
density cylinder. Clearly, when densities of the solid and fluid mediums are of the same order of magnitude,
neither rigid nor soft backgrounds are applicable. In cases where the impedance ratio is close to unity, the
proper background behaves intermediately between the rigid and soft backgrounds. Several models have been
proposed especially for the shells that can neither be considered thick nor thin and that the above backgrounds
are not applicable [28–33]. Recently exact backgrounds of cylindrical shells have been found based on the
absorbing scatterer, in which the elastic waves fade out quickly without forming resonances while the inertial
interaction of the shell with the surrounding fluid is taken into account [28,29]. Based on this approach, the
pure resonances in the scattering amplitudes of the nth normal mode can be isolated by subtracting the
inherent backgrounds from the global form function as follows [29]:

f ðresÞn ðy ¼ p; kaqþsÞ
�� �� ¼ f nðy ¼ p; kaqþsÞ � f ðbÞn ðy ¼ p; kaqþsÞ

�� ��, (31)

where the inherent background coefficients are defined as

f ðbÞn ðy; kaqþsÞ ¼
2�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pikaqþs

p AðbÞn cosðnyÞ, (32)
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here the background scattering coefficient, AðbÞn , which is determined by solving the problem of interaction of a
plane acoustic wave with an analogous bilaminate fluid shell structure, is defined as [29,34]

AðbÞn ¼ ð�1Þ
kraqþsJ

0
nðkraqþsÞ � ½Fnð0

þÞ�2JnðkraqþsÞ

kraqþsH
ð1Þ0

n ðkraqþsÞ � ½Fnð0
þÞ�2H

ð1Þ
n ðkraqþsÞ

, (33)

where [Fn(0
+)]2 is the zero limit of the accelerance function associated with the outer layer of the bilaminate

shell structure that, for the n ¼ 0 mode, can be obtained through the following relation [29,34,35]:

½F 0ð0
þÞ�2 ¼

r1
ro

½F 0ð0
þÞ�1

1� lnð1� h2=aqþsÞ½F 0ð0
þÞ�1

� 	 , (34)

where
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þÞ�0

� 	 ; ½F0ð0
þÞ�0 ¼

4rp

r2 � 4rp lnð1� h1=aqþsÞ
,

in which h1 ¼ (aq�a0) and h2 ¼ (aq+s�aq) are the thicknesses of piezoelectric and orthotropic layers,
respectively. Similarly for the nX1 modes, we have

½Fnð0
þÞ�2 ¼

r1
ro

n2 þ l2½Fnð0
þÞ�1

l2 þ ½Fnð0
þÞ�1

, (35)

where
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ro

rp

n2 þ l1½Fnð0
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l1 þ ½Fnð0
þÞ�0

; ½F nð0
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rp

r2
n,

and

l1;2 ¼ n
1þ ð1� h1;2=aqþsÞ

2n

1� ð1� h1;2=aqþsÞ
2n
.

Lastly, simple inspection of the above expressions indicates that, background scattering essentially depends
on the structure geometry (thickness of each layer) in addition to the inertia (densities) of constituent materials
and ambient fluids, i.e., it is independent of fluid compressibility and structure’s elastic properties. This
completes the necessary background required for the exact analysis of the problem.

3. Numerical results

In this section, we consider some numerical examples. Realizing the large number of parameters involved
here while keeping in view our computing hardware limitations, we confine our attention to a particular
problem. The surrounding and filling fluids are, respectively, assumed to be water and air at atmospheric
pressure and ambient temperature with their physical properties as given in Table 1. The outer radius and the
total thickness of the bilaminate hollow cylinder are supposed to be fixed (aq+s ¼ 1m, h ¼ h1+h2 ¼ 0.04m).
The outer layer is assumed to be fabricated from isotropic stainless steel with two independent elastic
constants, while the inner piezoelectric layer is supposed to be made of PZT4 (see Table 1). A MATLAB code
was constructed for computing the global modal transfer matrix (Sn), treating the linear systems of Eqs. (25),
(27) and (28), calculating the unknown scattering or transmission coefficients (An, Bn) as well as the
corresponding electrical voltage coefficients (fn), and ultimately finding the global scattering coefficient (fn),
along with the inherent background and resonance scattering coefficients (f ðbÞn ; f

ðresÞ
n ) as a function of the non-

dimensional frequency kaq+s for a unit amplitude incident plane wave (j0 ¼ 1). The computations were
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Table 1

Physical properties of the fluid and solid mediums

Water Steel PZT4

r1 ¼ 1000

c1 ¼ 1480

rp ¼ 7500

ro ¼ 7850 c
p
11 ¼ c

p
22 ¼ 139:0, c

p
33 ¼ 115:0

co
11 ¼ co

22 ¼ co
33 ¼ 282:7 c

p
44 ¼ c

p
55 ¼ 25:6, c

p
66 ¼ 30:5

co
44 ¼ co

55 ¼ co
66 ¼ 80:8 c

p
13 ¼ c

p
23 ¼ 74:0, c

p
12 ¼ 78:1

co
12 ¼ co

13 ¼ co
23 ¼ 121:1 e11 ¼ e22 ¼ 650, e33 ¼ 560

e31 ¼ e32 ¼ �5.2, e15 ¼ e24 ¼ 12.7,

e33 ¼ 15.1

Air
r2 ¼ 1:2

c2 ¼ 340

Units: c
p;o
ij ðGPaÞ; r1;2;p;o ðkg=m

3Þ; eij(10
�11 F/m); eij (C/m

2); c1,2 (m/s).
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Fig. 2. The total form function spectra for a unit amplitude plane sound wave incident upon the bilaminate shell (a ¼ 51) for selected

piezoelectric layer thickness parameters with open circuit boundary condition.
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performed on a Pentium IV personal computer with a maximum number of qmax, smax ¼ 100 sublayers, and a
maximum truncation constant of nmax ¼ 150, especially selected to assure convergence in case of a thick
bilaminate hollow cylinder and also in the high-frequency range. The convergence of numerical solutions are
secured in a simple trial and error manner, by increasing the number of sublayers as well as the truncation
constant (i.e., by including more modes in all summations) while looking for steadiness or stability in the
numerical values of the solutions. The question of convergence in acoustic scattering/radiation problems is
more systematically treated, for example, in the recent works by Hasheminejad and Maleki [36], and also
Hasheminejad and Azarpeyvand [37] (please see Fig. 6 in [36] for the effect of increasing number of sublayers,
and Fig. 13 in [37] for the effect of increasing the truncation constant on the convergence of solutions in
various frequency regimes).

Fig. 2 displays the total form function spectra for a unit amplitude plane sound wave incident upon the
bilaminate hollow cylinder (a ¼ 51) for selected piezoelectric layer thickness parameters (h1/h ¼ 0.25, 0.5, 0.75)
with open circuit boundary condition (Drjr¼a0;aq

¼ 0). Before making our general observations, we first note
that for any submerged shell structure, the form function amplitude curves consists of a resonance spectra
superimposed on a smooth background [18]. The resonance modes in the spectrum are primarily linked to the
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standing surface waves which are formed around the cylindrical shell. Furthermore, the rigorous research
works on sound wave scattering by (RST analysis of) thin shells made by several investigators [29], suggest
that the relatively deep drops observed in the form function amplitude curves in our frequency range of
interest in Fig. 2 may be linked to the Lamb-type waves while the sharp spikes may be related to the waves of
guided type in addition to the internal fluid resonance effects [38]. More careful examination of the figure
indicates that the change in the piezoelectric layer thickness has noticeable effects on both frequency and
quality (amplitude and width) of the resonances (i.e., both dips and peaks in the resonance spectra). The
resonances located at higher frequencies show a higher sensitivity to the change in the thickness ratio. In
particular, decreasing (increasing) the thickness of the relatively stiffer steel casing, which decreases (increases)
the overall stiffness of the bilaminate hollow cylinder, causes leftward (rightward) shifts in the resonance dips
and spikes appearing in the backscattered spectra. It is known that such leftward or rightward shifts are
consistent with the dependence of phase velocities of surface waves corresponding to these resonances [38].
This trend of shifts observed in the resonances of the bilaminate hollow cylinder may be related to the fact that
in our selected range of frequency, the wavelengths of standing waves corresponding to these resonances are so
considerably longer than the total thickness of the bilaminate hollow cylinder that one may expect the waves
in the structure to form more or less like waves in a homogeneous single-layer equivalent shell (i.e., a shell
having properties that are some kind of average of the properties of the bilaminate shell). The former
statement may be verified as follows. For an obliquely incident wave upon the cylindrical structure, lt

n ¼

ln= cos b is known as the projection of the total helical wavelength (ln) in the transverse ry-plane, where b is
the wave refraction angle [18]. Knowing that a resonance indicates a standing wave pattern, an integral
number (n) of the transversal component of wavelengths may be fitted around the circumference of the
resonating cylindrical structure such that lt

n ¼ 2paqþs=n [18]. In our particular problem (i.e., for aq+s ¼ 1m,
h ¼ 0.04m), for the resonances associated with mode numbers less than 15 (i.e., np15) and refraction angles
less than the angle of incidence (i.e., bpa ¼ 51), for example, the wavelength to thickness ratio for the
cylindrical structure is simply calculated to be greater than 10 (i.e., ln/hX10).

Fig. 3 illustrates how the angular distribution of far-field inherent background amplitude, jf ðbÞj ¼P1
n¼0f

ðbÞ
n ðy;oÞ

�� �� is subtracted from the total form function amplitude, jf1ðy;oÞj, to yield the corresponding

resonance scattering amplitude, jf ðresÞ1 j ¼
P1

n¼0f ðresÞn ðy;oÞ
�� �� for oblique (a ¼ 51)incidence upon the bilaminate

equal thickness PZT4/steel hollow cylinder (h1/h ¼ h2/h ¼ 0.5) with open circuit boundary condition at
selected wavenumbers kaq+s ¼ 7, 10.13, 13.35 corresponding to the first three large dips observed in Fig. 2.
The figure clearly displays the essence and effectiveness of the presented approach based on the subtraction of
the background component from the corresponding far-field form function amplitude in order to isolate and
identify the resonance frequencies [18]. In particular, the number of main lobes seen in the resonance
scattering directivity plots are exactly twice the mode number corresponding to each resonance frequency
(i.e., twice the number of wavelengths corresponding to each standing wave which fit the perimeter of the
guiding circle in the hollow cylinder [18]). It is notable that this equality is not necessarily true for the angular
diagrams of the form function amplitude. This is due to the interactions of re-radiated (resonance) component
of the scattered waves with the background component within the far-field form function. Nevertheless, the
resonance scattering directivities exhibit a more uniform pattern than those associated with the form function
amplitude, especially at higher frequencies, which greatly relieve the resonance identification process.
Consequently, the wavenumbers may be selected so that the dominant resonance frequencies corresponding to
various mode numbers (n ¼ 2, 3, 4) of the bilaminate hollow cylinder be readily detected. Furthermore, as the
selected resonance frequency increases (i.e., the resonances corresponding to higher modes), the resonance
scattering amplitude decreases which this trend point out to this fact that for the resonances belong to same
family, as the frequency increases, the contribution of resonance (background) component of scattered field
decreases (increases).

Fig. 4 displays the modal form function, fn(y ¼ p, kaq+s), inherent background, f ðbÞn ðy ¼ p; kaqþsÞ, and

resonance scattering, f ðresÞn ðy ¼ p; kaqþsÞ, spectra in addition to the associated modal surface voltage

coefficient, fn(r ¼ aq, kaq+s), for selected mode numbers (n ¼ 0,1,y,5) at oblique (a ¼ 51) incidence upon
the bilaminate equal-thickness PZT4/steel hollow cylinder (h1/h ¼ h2/h ¼ 0.5) with open circuit boundary
condition. First we note that the bilaminate hollow cylinder will appear ‘‘thin’’ to sound of long wavelength
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(small values of kaq+s) but ‘‘thick’’ to sound of short wavelength (large values of kaq+s) [29], the character of
the background coefficients will strongly depend on the acoustic wave length in such a way that they approach
the soft background amplitude for kaq+s-0, and the rigid background amplitude for kaq+s-N [29]. More
specifically, at very low frequencies, the ‘‘thin’’ air-filled hollow cylinder behaves essentially like a cylindrical
air bubble (i.e., a soft shell). Consequently, for the n ¼ 0 situation (monopole mode) a notably high peak
which is known in literature to be associated with the ‘‘giant monopole’’ resonance (i.e., analogous to air
bubbles in water) is observed at a very low frequency [39]. Second, it is clear that the global scattering
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coefficient curves (solid lines) perfectly coincide with the inherent background curves (dashed lines), except in
the resonance region where the resonances are clearly isolated. As the partial wave (mode) number n increases,
the locations of the dominant resonance (peak) frequencies shift toward higher wavenumbers. Furthermore,
the resonance scattering coefficient plots in the right column of Fig. 4 (solid lines) confirms that the selected
wavenumbers kaq+s ¼ 7, 10.13, 13.35 in Figs. 2 and 3, correctly correspond to the resonance frequencies
associated with the n ¼ 2,3,4 mode numbers, respectively. The most interesting observation is the fact that the
extracted resonance frequencies, appearing in the second column plots of Fig. 4 (i.e., the resonance scattering
coefficients), are exactly coincident with the resonances of the excited electrical voltage (i.e., the modal voltage
amplitudes). Such good coincidence can advantageously be exploited in the use of smart (intelligent) materials
in sensor design industry. Also, in the cases of n ¼ 1–4 mode numbers which each of them comprises of two
dominant resonance frequencies in the selected frequency range (i.e., 0okaq+so15), for the resonances with
lower bandwidth, the amplitude of the excited modal voltage increases which this phenomenon implies this
general fact that the resonances with lower attenuation (i.e., lower bandwidth) are more detectable than ones
with greater attenuation.

Fig. 5 compares the total form function spectra for oblique (a ¼ 51) incidence upon the bilaminate equal-

thickness PZT4/steel hollow cylinder (h1/h ¼ h2/h ¼ 0.5) of open circuit boundary condition Drjr¼a0;aq
¼ 0

� �
with that of the closed circuit boundary condition ( fjr¼a0;aq

¼ 0
� �

) in a relatively wide range of frequencies

(0okaq+so100). It can be seen that, in the low-frequency range (kaq+so20), the resonance frequencies
corresponding to the open circuited cylinder are slightly higher than those associated with the short circuited
one. In the high-frequency range (80okaq+so100), on the other hand, the resonance frequencies for the open
circuited cylinder are considerably higher than those for the short circuited hollow cylinder. This implies that
we can expect a higher overall stiffness in response to the more intense electric field for the composite hollow
cylinder in the open circuit electrical boundary condition. Further conclusions about the effects of the
electrical boundary conditions on the mechanical behaviour of the piezoelectric hollow cylinder are very hard
to make, due to the high complexity in the coupling between mechanical and electrical fields, especially in the
resonance regions. Consider, for example, an axially polarized piezoelectric hollow cylinder made of PZT4 is
excited by a positive axial electrical field (i.e., Ez40, Ey, Er ¼ 0). Keeping in mind that e31, e32o0, and e3340
(see Table 1), a simple look at the constitutive Eq. (15) suggests that after imposing a positive axial electrical
field (Ez40), the magnitude of axial stress component Szz (or the effective stiffness along the axial direction)
decreases, while those of the radial and transverse components Srr, Syy (or the effective stiffness along radial
and circumferential directions) increase, which indicates the complication of the problem.

Fig. 6 displays the total form function spectra for oblique (a ¼ 451) incidence upon the bilaminate equal-
thickness PZT4/steel hollow cylinder (h1/h ¼ h2/h ¼ 0.5) with active electrical boundary conditions (Eq. (23)),

where the electrical voltage, fðr; y;oÞjr¼aq
¼
PN

n¼0aqþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
co
44=�33

p
fn cosðnyÞ eiðkzz�otÞ, are gradually imposed

(i.e., N ¼ 0–8) aiming at partial cancellation or control of the reflected sound field. Also shown are the
amplitude and phase of the corresponding modal voltage coefficients, fn. Here, the gradual cancellation of the
backscattered sound pressure is evident as the total number of modes included in the above summation
increases. In particular, the complete cancellation of the backscattered pressure in the range 0okaq+so10 is
achieved by application of the first eight modal voltages (N ¼ 0–8). This implies that more modes must be
employed for proper acoustic cancellation at higher incident wave frequencies, where the modal voltage
amplitudes themselves are also larger in overall magnitude (e.g., see the last few plots in the right column of
Fig. 6). Moreover, systematic 1801phase shifts near the dominant modal amplitude dips are noted.

Fig. 7a shows the variation of normalized voltage amplitude, fðr ¼ aq; y ¼ p;oÞ



aqþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
co
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p� �
with angle

of incidence, a, for selected piezoelectric layer thickness parameters (h1/h ¼ 0.25, 0.5, 0.75) and incident wave
frequency (kaq+s ¼ 10). Before making our specific observations, we first note that coupling between the
mechanical and electrical fields is a function of the loading characteristics (e.g., angle of incidence, incident
wave frequency, etc.) in addition to the piezoelectricity ones (e.g., piezoelectric constants, eij; dielectric
constants, eij), and as a general rule, the stronger the electrical–mechanical coupling is, the less voltage is
needed for successful cancellation of the reflected or transmitted pressure. Accordingly, a remarkable peak in
total voltage amplitude curves, is observed at a ¼ 01 (normal) incidence, almost regardless the selected
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incident frequency (other frequencies are not displayed for briefness) and thickness parameter. This may be
linked to the fact that for this angle of incidence, the coupling between electrical and mechanical fields for an
axially polarized piezoelectric layer is in weakest state that in which the axial component of the electrical field
(i.e., Ez) is not excited, (i.e., Ez ¼ qf/qzE0). Consequently, this type of piezoelectric transducer is expected to
be totally inefficient for near normal angles of incidence. Furthermore, for incident wave angles of about less
than 35o several peaks (dips) are noted in electrical voltage amplitude curves, which imply that for this range
of incidence angles, there is a weak (strong) coupling between the electrical and mechanical field of
piezoelectric layer. On the other hand, for incident wave angles greater than about 35o, the required electrical
voltage curves are very smooth (non-oscillatory) while they monotonically decrease in magnitude. The latter
observation is due to the fact that as the incident angle increases, the level of mechanical excitement along
axial direction increases, and consequently the coupling between the electrical field of axially polarized
piezoelectric layer and the mechanical field of entire structure markedly amplifies. Also, the non-oscillatory
behavior of the voltage may perhaps be related to fact that an increase in the incidence angle is expected to
cause an increase in the refraction angle (b), for which most of the resonance frequencies move towards infinity
(i.e., they cannot be easily excited) [40]. As a final observation, an inverse relationship between the thickness
ratio of piezoelectric layer and the required voltage amplitude is noted in the latter range of incidence angles
(i.e., greater than about 351). The latter effect is also seen in Fig. 7b, where the corresponding normalized
voltage directivity curves for selected angle of incidence (a ¼ 451) are displayed.

Finally, to check overall validity of the work, we first computed the variations of the global scattering as
well as the associated inherent background coefficients with dimensionless frequency for the first five modes
for a two-layered air-filled aluminium (Al)–tungsten carbide (WC) 2%-thickness shell submerged in water by
setting h/aq+s ¼ 0.02, h1/h ¼ 0.5, rp ¼ 2790 kg/m3, c

p
11 ¼ c

p
22 ¼ c

p
33 ¼ 113:2GPa, c

p
44 ¼ c

p
55 ¼ c

p
66 ¼ 26:8GPa,

c
p
12 ¼ c

p
13 ¼ c

p
23 ¼ 59:9GPa, ro ¼ 13,800 kg/m3, co

11 ¼ co
22 ¼ co

33 ¼ 649:2GPa, co
44 ¼ co

55 ¼ co
66 ¼ 241:6GPa,
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co
12 ¼ co

13 ¼ co
23 ¼ 166:0GPa, r1 ¼ 1000 kg/m3, c1 ¼ 1480m/s, r2 ¼ 1.2 kg/m3 and c2 ¼ 340m/s and

e31 ¼ e32 ¼ e15 ¼ e33 ¼ e24 ¼ 0C/m2 in our general MATLAB code. The outcome, as shown in Fig. 8a
shows good agreement with the numerical results displayed in Fig. 11 of Ref. [29]. As a further check, we used
our general formulation to determine the free vibration eigen-frequencies (the first four modes) for an
evacuated thick-walled closed-circuit axially polarized PZT4 cylindrical shell. To do this we set the
determinant of the left-hand side matrix in Eq. (25) equal to zero, i.e.,

Cn
1;1 Cn

1;2 0 0 �Sn
1;2 �Sn

1;3 �Sn
1;7

0 Cn
2;2 1 0 �Sn

2;2 �Sn
2;3 �Sn

2;7

0 Cn
3;2 0 1 �Sn

3;2 �Sn
3;3 �Sn

3;7

Cn
4;1 Cn

4;2 0 0 �Sn
4;2 �Sn

4;3 �Sn
4;7

0 Cn
5;2 0 0 �Sn

5;2 �Sn
5;3 �Sn

5;7

0 Cn
6;2 0 0 �Sn

6;2 �Sn
6;3 �Sn

6;7

0 Cn
7;2 0 0 T

p
nð8;2Þ T

p
nð8;3Þ T

p
nð8;7Þ

�����������������

�����������������

¼ 0. (37)

Eigenequation (37) is solved numerically using the following input data: h/aq+s ¼ 0.05, h1/h-1, h2/h-1,
rp ¼ 7500 kg/m3, c

p
11 ¼ c

p
22 ¼ 139GPa, c

p
33 ¼ 115GPa, c

p
44 ¼ c

p
55 ¼ 25:6GPa, c

p
66 ¼ 30:5GPa, c

p
13 ¼

c
p
23 ¼ 74GPa, c

p
12 ¼ 78GPa, e11 ¼ e22 ¼ 650� 10�11 F/m, e33 ¼ 560� 10�11 F/m, e31 ¼ e32 ¼ �5.2C/m

2,
e15 ¼ e24 ¼ 12.7C/m2, e33 ¼ 15.1C/m2, r1, r2-0 kg=m3and c1, c2-0m/s. Fig. 8b show good agreements

between the computed normalized modal frequencies, On ¼ o
.

kz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c

p
44=rp

q� �
, as a function of dimensionless
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wavenumber, w ¼ kza0, with those displayed in Fig. 1 of Ref. [23]. Here, we note that, for a given value of
0owo8, the real roots of Eq. (37) are simply obtained by searching (sweeping) for the values of On which
make the real part of determinant identically zero.
4. Conclusions

The classic T-matrix method in conjunction with the state-space approach and the novel features of RST are
used to present a mathematical model for acoustic wave scattering and active sound cancellation from a
piezoelectric-coupled bilaminate hollow cylinder suspended in and filled with compressible ideal fluids. The
numerical results reveal that the change in the piezoelectric layer thickness has noticeable effects on both
location and quality of the resonances, especially in the high-frequency range. In particular, decreasing
(increasing) the thickness of the stiffer steel casing causes leftward (rightward) shifts in the backscattered
resonance spectra. Furthermore, the essence and effectiveness of the classic RST approach based on
subtraction of the inherent background components from the corresponding far-field form function
amplitudes for proper isolation and identification of the resonance frequencies of the compound structure is
demonstrated. It is shown that the extracted scattering resonance frequencies are exactly coincident with the
electrical voltage resonances induced in the piezoelectric layer, which is of practical value in the use of smart
materials for sensor design. Also, the resonance frequencies corresponding to the open circuited piezoelectric
layer are higher than those for the short circuited layer, especially in the very high-frequency range. This
implies that at such high incident wave frequencies, a considerably higher overall stiffness for the open
circuited composite hollow cylinder in response to the more intensely induced electric field is expected.

For the active acoustic cancellation problem, gradual extinction of the backscattered sound pressure at low
to intermediate frequencies by increasing the total number of modes, which are included in the series solution,
is observed. At high incident wave frequencies, considerably more modes must naturally be employed for
proper acoustic cancellation. Furthermore, as the coupling between electrical and mechanical fields is in its
weakest state for near normal angles of incidence, the axially polarized piezoelectric transducer is found to be
totally inefficient for this angle of incidence, almost regardless of the incident wave frequency and wall
thickness. Moreover, for small to moderate angles of incidence (e.g., less than about 351 for PZT4 layer)
several peaks (dips) are noted in the electrical voltage amplitude curves, which imply that there is a weak
(strong) coupling between the electrical field of the piezoelectric layer and the mechanical field of total
structure for this range of incidence angles. For near grazing incident angles, the required electrical voltage
drastically decreases, which is due to the fact that the coupling between the electrical field of axially polarized
piezoelectric layer and the mechanical field of entire structure markedly increases. Also, an inverse relationship
between the thickness of piezoelectric layer and the required voltage amplitude is noted for relatively large
incidence angles.
Appendix A. Coefficient matrices for the orthotropic layer
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Appendix B. Coefficient matrices for the piezoelectric layer
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